Audi-a3club - Автомобильный портал

Альдегиды и кетоны таблица. Альдегиды и кетоны

РАБОЧИЕ ТЕТРАДИ

Продолжение. Начало см. в № 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32/2004

Урок 24. Химические свойства и применение альдегидов

Химические свойства. Рассмотрим поведение альдегидов в отношении стандартного набора реагентов: кислорода воздуха О 2 , окислителей [О], а также Н 2 , Н 2 О, спиртов, Na, НСl.

Альдегиды медленно окисляются кислородом воздуха в карбоновые кислоты:

Качественная реакция на альдегиды – реакция «серебряного зеркала». Реакция состоит во взаимодействии альдегида RСНО с водно-аммиачным раствором оксида серебра(I), представляющим растворимое комплексное соединение OH. Реакцию проводят при температуре, близкой к температуре кипения воды (80–100 °С). В результате на стенках стеклянного сосуда (пробирки, колбы) образуется осадок металлического серебра – «cеребряное зеркало»:

Восстановление гидроксида меди(II) в оксид меди(I) – другая характерная реакция альдегидов. Реакция протекает при кипячении смеси и состоит в окислении альдегида. Точнее сказать, происходит внедрение атома [О] окислителя Cu(OH) 2 по связи С–Н альдегидной группы. При этом изменяются степени окисления карбонильного углерода (от +1 до +3) и атома меди (от +2 до +1). При нагревании голубого осадка Cu(OH) 2 в смеси с альдегидом наблюдается исчезновение голубой окраски и образование красного осадка Cu 2 O:

Альдегиды присоединяют водород Н 2 по двойной связи С=О при нагревании в присутствии катализатора (Ni, Pt, Pd). Реакция сопровождается разрывом -связи в карбонильной группе С=О и присоединением по месту ее разрыва двух атомов Н молекулы водорода Н–Н. Таким образом из альдегидов получают спирты:

Альдегиды с электроноакцепторными заместителями в -положении к альдегидной группе присоединяют воду с образованием гидратов альдегидов (диолов-1,1):

Для того чтобы удерживать две электроотрицательные гидроксильные группы, атом углерода должен нести достаточный положительный заряд. Созданию дополнительного положительного заряда на карбонильном углероде способствуют три электроноакцепторных атома хлора при соседнем -углероде хлораля.

Реакция альдегидов со спиртами. Синтез полуацеталей и ацеталей. В благоприятных условиях (например: а) при нагревании с кислотой или в присутствии водоотнимающих средств; б) при внутримолекулярной конденсации с образованием пяти- и шестичленных циклов) альдегиды реагируют со спиртами. При этом к одной молекуле альдегида может присоединиться либо одна молекула спирта (продукт – полуацеталь), либо две молекулы спирта (продукт – ацеталь):

Альдегиды не присоединяют НСl по двойной связи С=О. Также альдегиды не реагируют с Na, т.е. альдегидный водород группы –СНО не обладает заметными кислотными свойствами.

Применение альдегидов основано на их высокой реакционной способности. Альдегиды используют в качестве исходных и промежуточных соединений в синтезе веществ с полезными свойствами других классов.
Формальдегид НСНО – бесцветный газ с резким запахом – используют для производства полимерных материалов . Вещества с подвижными атомами Н в молекуле (обычно при связях С–Н или N–H, но не О–Н) соединяются с формальдегидом СН 2 О по типу:

Если в молекуле исходного вещества два или несколько подвижных протонов (у фенола С 6 Н 5 ОН – три таких протона), то в реакции с формальдегидом получается полимер. Например, с фенолом – фенолформальдегидная смола:

Подобным образом мочевина с формальдегидом дает мочевиноформальдегидные смолы:

Формальдегид служит исходным веществом для производства красителей, фармацевтических препаратов, синтетического каучука, взрывчатых веществ и многих других органических соединений.

Формалин (40%-й водный раствор формальдегида) применяется в качестве антисептика (обеззараживающего средства). Свойство формалина свертывать белок используется в кожевенном производстве и для сохранения биопрепаратов.

Ацетальдегид СН 3 СНО – бесцветная жидкость (t кип = 21 °С) с резким запахом, хорошо растворимая в воде. Главное использование ацетальдегида – получение уксусной кислоты . Из него также получают синтетические смолы, лекарства и т.д.

УПРАЖНЕНИЯ

1. Опишите, с помощью каких химических реакций можно различить следующие пары веществ:
а) бензальдегид и бензиловый спирт; б) пропионовый альдегид и пропиловый спирт. Укажите, что будет наблюдаться в ходе каждой реакции.

2. Приведите уравнения реакций, подтверждающих наличие в молекуле
п-гидроксибензальдегида соответствующих функциональных группировок.

3. Напишите уравнения реакций бутаналя со следующими реагентами:
а)
Н 2 , t , кат. Pt; б) КМnО 4 , Н 3 О + , t ; в) OH в NH 3 /H 2 O; г) НОСН 2 СН 2 ОН, t, кат. НСl.

4. Составьте уравнения реакций для цепочки химических превращений:

5. В результате гидролиза ацеталя образуются альдегид RCHO и спирт R"ОН в мольном соотношении 1:2. Составьте уравнения реакций гидролиза следующих ацеталей:

6. При окислении предельного одноатомного спирта оксидом меди(II) образовалось 11,6 г органического соединения с выходом 50%. При взаимодействии полученного вещества с избытком аммиачного раствора оксида серебра выделилось 43,2 г осадка. Какой спирт был взят и какова его масса?

7. 5-Гидроксигексаналь в подкисленном водном растворе находится преимущественно в форме шестичленного циклического полуацеталя. Составьте уравнение соответствующей реакции:

Ответы на упражнения к теме 2

Урок 24

1. Различить два вещества можно с помощью реакций, характерных только для одного из этих веществ. Например, альдегиды окисляются в кислоты при действии слабых окислителей. Нагревание смеси бензальдегида и аммиачного раствора оксида серебра протекает с образованием на стенках колбы «серебряного зеркала»:

Бензальдегид восстанавливается при каталитическом гидрировании в бензиловый спирт:

Бензиловый спирт реагирует с натрием, в реакции выделяется водород:

2С 6 Н 5 СН 2 ОН + 2Na 2C 6 Н 5 CН 2 ONa + Н 2 .

При нагревании в присутствии катализатора меди бензиловый спирт окисляется кислородом воздуха в бензальдегид, что обнаруживается по характерному запаху горького миндаля:

Аналогичным образом можно различить пропионовый альдегид и пропиловый спирт.

2. В п -гидроксибензальдегиде три функциональные группы: 1) ароматическое кольцо; 2) фенольный гидроксил; 3) альдегидная группа. В специальных условиях – при защите альдегидной группы от окисления (обозначение – [–СНО]) – можно провести хлорирование п -гидроксибензальдегида в бензольное кольцо:

6. Уравнения указанных реакций:

Последовательно найдем количество вещества – серебра, альдегида RCHO и спирта RCH 2 OH:

(Ag) = 43,2/108 = 0,4 моль;

(RCHO) = 1/2(Ag) = 0,2 моль.

C учетом выхода 50% в реакции (1):

(RСН 2 ОН) = 2(RCHO) = 0,4 моль.

Молярная масса альдегида:

М (RCHO) = m / = 11,6/0,2 = 58 г/моль.

Это – пропионовый альдегид СН 3 СН 2 СНО.

Соответствующий ему спирт – пропанол-1 СН 3 СН 2 СН 2 ОН.

Масса спирта: m = M = 0,4 60 = 24 г.

Ответ. Был взят спирт пропанол-1 массой 24 г.

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная групп а:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислоты Название кислоты тривиальное/систематическое Название соли тривиальное/систематическое
HCOOH муравьиная/ метановая формиат/ метаноат
CH 3 COOH уксусная/ этановая ацетат/ этаноат
CH 3 CH 2 COOH пропионовая/ пропановая пропионат/ пропаноат
CH 3 CH 2 CH 2 COOH масляная/ бутановая бутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Реакции разрушения карбоксильной группы (декарбоксилирование)

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегидами и кетонами называют производные углеводородов, содер­жащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соедине­ние с атомом водорода, а другая - с радикалом (предельного ряда в пре­дельных альдегидах и непредельного - в непредельных альдегидах). Об­щая формула альдегидов:

причем R может быть равно Н.

В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:

Изомерия. Номенклатура.

Общая формула предельных альдегидов и кетонов С n Н 2 n O.

Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой

(см. ниже).

Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным угле­водородам с добавлением суффикса -аль (систематическая номенклатура).

муравьиный альдегид (формальдегид), метаналь (рис. 1а )
уксусный альдегид, этаналь (рис. 1б )
пропионовый альдегид, пропаналь
СН 3 -СН 2 -СН 2 -СНО масляный альдегид, бутаналь
изомасляный альдегид, 2-метилпропаналь
СН 3 -СН 2 -СН 2 -СН 2 -СНО валериановый альдегид, пентаналь
изовалернановый альдегид, 3-метилбутаналь
метилэтилуксусный альдегид, 2-метилбутаналь
триметилуксусный альдегид, 2,2-диметлпропаналь

Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наимено­ванию радикалов, связанных с карбонильной группой. По систематичес­кой номенклатуре к названию предельного углеводорода добавляется суф­фикс -он и указывается номер атома углерода, связанного с карбониль­ным кислородом:

Способы получения

Альдегиды и кетоны получают рядом общих методов.

1. Окислением или каталитическим дегидрированием первичных спир­тов получают альдегиды, вторичных - кетоны. Эти реакции уже приво­дились при рассмотрении химических свойств спиртов.

2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:



R - СООН + Н-СООН→R-СНО + СО 2 + Н 2 0

2R-СООН→R -СО -R + C0 2 + Н 2 0

R-СООН + R" - СООН → R - СО-R’+С0 2 + Н 2 0

Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пироли­зом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей ба­риевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.

3. Гидролиз геминальных дигалогенопроизводных приводит к альдеги­дам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов угле­рода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.

4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:

НС≡СН + Н 2 O→ СН 3 -СНО

5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.

RCH 2 OH + (CH 3) 2 SO→ RCH = О + (CH 3) 2 S

6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:

R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О

Имеется несколько модификаций этого метода.

7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кис­лот с литийдиалкилкупратамн и кадмийалкилами:

R 2 CuLi + R"COCI→R - СО - R"+LiCI + R - Сu

8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализато­ров (например, Со + ThO 2 + MgO, нанесенные на кизельгур):

Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе полу­чаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:

2Со + 8СО→ Со 2 (СО) 8

Cо 2 (CO)8 + H 2 → 2НСо(СО) 4

R -СН=СН 2 + НСо(СО) 4 → R - СН 2 -СН 2 - Со(СО) 4

R - СН 2 -СН 2 -Со(СО) 4 +СО→ R-СН 2 -СН 2 -СО - Со(СО) 4

R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 →R-СН 2 -СН 2 -СНО + Со(СО) 8

Физические свойства

Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие аль­дегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут доволь­но приятно.

При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоцииро­ванными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плот­ность альдегидов и кетонов ниже единицы.

В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы на­ходится в очень слабом поле.

Химические свойства

Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбониль­ной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электро­отрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома уг­лерода. Дипольный момент карбонильной груп­пы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответ­ственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризо­ванная часть присоединяющейся молекулы всегда на­правляется к углеродному атому карбонильной груп­пы, в то время как ее положительно поляризованная часть направляется к кислородному атому.

Реакция присоединения нуклеофильных реагентов по месту карбо­нильной связи - ступенчатый процесс. Схематически реакцию присо­единения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:

Радикалы, способные увеличивать положительный заряд на атоме уг­лерода карбонильной группы, сильно повышают реакционную способ­ность альдегидов и кетонов; радикалы или атомы, уменьшающие положи­тельный заряд на этом углеродном атоме, оказывают противоположное действие.

Помимо реакций присоединения по карбонильной группе для альдеги­дов и кетонов характерны также реакции с участием соседних с карбо­нильной группой углеродных радикалов, обусловленные электроноакцеп­торным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.

А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вто­ричные спирты. На этом основан один из методов получения спиртов.

В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:

Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не вос­станавливает двойные углерод-углеродные связи.

При восстановлении альдегидов или кетонов водородом в момент выде­ления (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:

пинакон

Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При вос­становлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.

Реакция протекает с промежу­точным образованием свободных радикалов:

Б. Реакции нуклеофильного присоединения.

1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.

2. Присоединение синильной кислоты приводит к образованию α-оксинитрилов, омылением которых получают α-гидроксикислоты:

нитрил α-гидроксипропионовой кислоты

Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Циани­стый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при обра­зовании циангидрина является ион CN - :

3. Присоединение гидросульфита натрия дает кристаллические веще­ства, обычно называемые гидросульфитными производными альдегидов или кетонов:

При нагревании с раствором соды или минеральных кислот гидросуль­фитные производные разлагаются с выделением свободного альдегида или кетона, например:

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жир­ном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .

4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:

ацетальдимин, этаними н

которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:

альдегидаммиа к

При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:

5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):

ацетальдоксим

ацетоноксим

Эти реакции применяют для количественного определения карбониль­ных соединений.

Механизм реакции (R=H или Alk):

6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):

гидразон

альдазин

кетазин

Гидразоны кетонов и альдегидов при нагревании с твердым КОН выде­ляют азот и дают предельные углеводороды (реакция Кижнера):

В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гид­разином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.

Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.

Образование фенилгидразонов:

Семикарбазоны образуются по схеме:

Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:

Для этих реакций характерен кислотный катализ.

7. Альдегиды и кетоны способны присоединять по карбонильной груп­пе воду с образованием гидратов - геминальных гликолей. Эти соедине­ния во многих случаях существуют только в растворах. Положение равно­весия зависит от строения карбонилсодержащего соединения:

Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кри­сталлические гидраты.

Альдегиды с более высокой молекулярной массой образуют с водой устойчи­вые при низких температурах твердые полугидраты:

8.

В присутствии следов минеральной кислоты образуются ацетали:

Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвер­гаются гидролизу с образованием спиртов и выделением альдегидов:

Ацеталь, полученный из масляного альдегида и поливинилового спир­та, используется в качестве клея при изготовлении безосколочных стекол.

Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кис­лоты:

9. При действии на альдегиды спиртов образуются полуацетали:

Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:

Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:

В. Реакции окисления. Окисление альдегидов идет значительно лег­че, чем кетонов. Кроме того, окисление альдегидов приводит к образова­нию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.

Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:

Аммиачный раствор гидроксида серебра OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности - образуется сереб­ряное зеркало:

Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.

Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной рас­твор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:

Красная окись меди Cu 2 О почти количественно выпадает в осадок. Ре­акция эта с кетонами не идет.

Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат ка­лия, по ионному механизму, причем первой стадией процесса обычно яв­ляется присоединение окислителя по СО-группе.

Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.

По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.

Г. Реакции полимеризации. Эти реакции характерны только для аль­дегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):

Механизм полимеризации может быть представлен в следующем виде:

Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Ре­акции ускоряются как кислотами, так и основаниями.

Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:

Е. Реакции конденсации.

1. Альдегиды в слабоосновной среде (в при­сутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли об­разуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в α-положении к кар­бонилу, как это показано на примере уксусного альдегида:

альдоль

В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбо­нилу, так как только водородные атомы этой группы в достаточной степе­ни активируются карбонильной группой:

3-гидрокси-2-метилпентаналь

Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.

Механизм реакции альдольной конденсации, катализируемой основа­ниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:

Поэтому переход от предельного альдегида к непредельному через аль­доль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.

При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не спо­собные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:

2(СН 3) 3 С-СНО +КОН→(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.

Альдольная конденсация кетонов происходит в более жестких услови­ях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:

В еще более жестких условиях, например при нагревании с концентри­рованной серной кислотой, кетоны подвергаются межмолекулярной де­гидратации с образованием непредельных кетонов:

окись мезитила

Окись мезитила может реагировать с новой молекулой ацетона:

форон

Возможна и конденсация между альдегидами и кетонами, например:

3-пентен-2-он

Во всех этих реакциях вначале идет альдольная конденсация, а затем де­гидратация образовавшегося гидроксикетона.

2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).

уксусноэтиловый эфир

Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:

R-СНО + [(C 6 H 5) 3 P] 3 PhCl→ R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.

При изучении химических превращений альдегидов и кетонов необхо­димо обратить внимание на существенные различия между ними. Альде­гиды легко окисляются без изменения углеродной цепи (реакция серебря­ного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.

Отдельные представители. Применение

Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражаю­ще на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - непол­ным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над сереб­ряным катализатором):

СН 3 ОН→ Н 2 +Н 2 СО.

Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.

1. В щелочной среде он претерпевает реакцию окисления - восста­новления (реакция Канниццаро):

2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впер­вые А. М. Бутлеровым:

6Н 2 С=О + 4NH 3 → 6H 2 0 + (CH 2) 6 N 4

уротропин

Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого ни­трованием уротропина)

гексаген

в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).

3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвер­гается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:

гексоза

В присутствии щелочей формальдегид может конденсироваться и с дру­гими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4

СН 3 СНО + 3Н 2 СО → (НОСН 2) 3 ССНО

(НОСН 2) 3 ССНО + Н 2 СО → (НОСН 2) 4 С + НСОО -

Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .

4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.

5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленно­сти. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.

6. Продуктом конденсации формальдегида с изобутиленом (в присут­ствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагрева­нии до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разла­гается с образованием изопрена.

Формалин широко применяется в качестве дезинфицирующего веще­ства для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.

Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздра­жение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.

Промышленные методы получения ацетальдегида уже были рассмот­рены: гидратация ацетилена, дегидрирование этилового спирта, изомери­зация окиси этилена, каталитическое окисление воздухом предельных углеводородов.

В последнее время ацетальдегид получают окислением этилена кисло­родом воздуха в присутствии катализатора по схеме:

CH 2 =CH 2 +H 2 O +PdCl 2 →CH 3 -СНО + 2HCl + Pd

Pd + 2CuC1 2 → 2CuCl + PdCl 2

2CuCl + 2HCI + 1 / 2 O 2 → 2CuCI 2 + H 2 O

2CH 2 = CH 2 + O 2 →2CH 3 CHO

Другие 1-алкены образуют в этой реакции метилкетоны.

Из ацетальдегида в промышленных масштабах получают уксусную кис­лоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.

Подобно формальдегиду, он конденсируется с фенолом, аминами и дру­гими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.

Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количе­ства последнего возрастают с понижением температуры (до -10 °С):

Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристал­лическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака по­лучают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.

Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлориро­ванием этилового спирта.

Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:

Обладает снотворным действием. Конденсацией хлораля с хлорбензо­лом получают в промышленных масштабах инсектициды.

При действии на хлораль щелочей образуется хлороформ:

Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органиче­ских растворителях.

Ацетон получают:

1) из изопропилового спирта - окислением или дегидрированием;

2) окислением изопропилбензола, получаемого алкилированием бен­зола, наряду с фенолом;

3) ацетон-бутанольным брожением углеводов.

Ацетон в качестве растворителя применяется в больших количе­ствах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при произ­водстве небьющегося органического стекла, кетена и т. д.

Строение альдегидов и кетонов

Альдегиды - органические вещества, молеку­лы которых содержат карбонильную группу :

соединенную с атомом водорода и углеводородным радикалом. Общая формула альдегидов имеет вид:

В простейшем альдегиде - роль углеводородного радикала играет другой атом водорода:


Формальдегид

Карбонильную группу, связанную с атомом во­дорода, часто называют альдегидной :

Кетоны - органические вещества, в молеку­лах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кето-группой .

В простейшем кетоне - ацетоне - карбониль­ная группа связана с двумя метильными радика­лами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного ра­дикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды :


В соответствии с номенклатурой ИЮПАК на­звания предельных альдегидов образуются от на­звания алкана с тем же числом атомов углерода с молекуле с помощью суффикса -аль . Например:


Нумерацию атомов углерода главной цепи на­чинают с атома углерода альдегидной группы. По­этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее поло­жение нет необходимости.

Наряду с систематической номенклатурой ис­пользуют и тривиальные названия широко приме­няемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соот­ветствующих альдегидам.

Для названия кетонов по систематической но­менклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углеро­да карбонильной группы (нумерацию следует на­чинать от ближайшего к кетогруппе конца цепи).

Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродно­го скелета , которая возможна с бутаналя, а для кетонов - также и изомерия положения карбо­нильной группы . Кроме этого, для них характер­на и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов и кетонов

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислоро­да по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электрон­ной плотности π-связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода . Низшие члены ряда альдегидов и ке­тонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температу­ры кипения ниже, чем у соответствующих спир­тов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей.

Низшие альдегиды име­ют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, непри­ятный запах; высшие альдегиды и кетоны обла­дают цветочными запахами и применяются в пар­фюмерии.

Наличие альдегидной группы в молекуле опре­деляет характерные свойства альдегидов.

Реакции восстановления.

1. Присоединение водорода к молекулам альде­гидов происходит по двойной связи в карбониль­ной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

2. Гидрирование альдегидов - реакция восста­новления, при которой понижается степень окис­ления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кисло­ты. Схематично этот процесс можно представить так:

1. Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

2. Окисление слабыми окислителями (аммиач­ный раствор оксида серебра). В упрощенном виде этот процесс можно выразить уравнением реак­ции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводит­ся реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее ши­роко используют для изготовления зеркал, сереб­рения украшений и елочных игрушек.

3. Окисление свежеосажденным гидроксидом меди (II). Окисляя альдегид, Cu 2+ восстанавливает­ся до Cu + . Образующийся в ходе реакции гидрок­сид меди (I) CuOH сразу разлагается на оксид ме­ди (I) красного цвета и воду.

Эта реакция, так же как и реакция «серебряно­го зеркала », используется для обнаружения альде­гидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Химические свойства альдегидов и кислот - конспект

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид HCHO) - бесцветный газ с резким запахом и тем­пературой кипения -21 °С, хорошо растворим в во­де. Формальдегид ядовит! Раствор формальдегида в воде (40 %) называют фор­малином и применяют для формальдегид и уксусной дезинфекции. В сельском хозяйстве формалин использу­ют для протравливания семян, в кожевенной промышленности - для обра­ботки кож. Формальдегид используют для получе­ния уротропина - лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применя­ют в качестве горючего (сухой спирт). Большое ко­личество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид CH 3 CHO) - жидкость с резким, неприятным за­пахом и температурой кипения 21 °С, хорошо рас­творим в воде. Из уксусного альдегида в промыш­ленных масштабах получают уксусную кислоту и ряд других веществ, он используется для произ­водства различных пластмасс и ацетатного волок­на. Уксусный альдегид ядовит !

Группа атомов -

Называется карбоксиль­ной группой , или карбоксилом.

Органические кислоты, содержащие в молеку­ле одну карбоксильную группу, являются одноос­новными .

Общая формула этих кислот RCOOH, например:

Карбоновые кислоты, содержащие две кар­боксильные группы, называются двухосновными . К ним относятся, например, щавелевая и янтар­ная кислоты:

Существуют и многоосновные карбоновые кис­лоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного ра­дикала карбоновые кислоты делятся на предель­ные, непредельные, ароматические .

Предельными , или насыщенными, карбоновы­ми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат π-связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, не­предельным углеводородным радикалом, например, в молекулах акриловой (пропеновой)

СН 2 =СН-СООН

или олеиновой

СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН

и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической , так как содержит в моле­куле ароматическое (бензольное) кольцо:

Название карбоновой кислоты образуется от на­звания соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлени­ем суффикса -ов , окончания -ая и слова кислота . Нумерация атомов углерода начинается с карбок­сильной группы . Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложив­шиеся, или тривиальные, названия.

Состав предельных одноосновных карбоновых кислот будет выражаться общей формулой С n Н 2n O 2 , или С n Н 2n+1 СOOН , или RСООН .

Физические свойства карбоновых кислот

Низшие кислоты, т. е. кислоты с относитель­но небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидко­сти с характерным резким запахом (например, за­пах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жид­кости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры ки­пения предельных одноосновных карбоновых кис­лот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относитель­ной молекулярной массы. Так, температура кипе­ния муравьиной кислоты равна 100,8 °С, уксус­ной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молеку­лярную массу (М r (НСООН) = 46), при обычных уcловиях является жидкостью с температурой кипе­ния 100,8 °С. В то же время бутан (M r (C 4 H 10) = 58) в тех же условиях газообразен и имеет температу­ру кипения -0,5 °С. Это несоответствие темпера­тур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот , в которых две молекулы кислоты связаны двумя водородными связями :

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоно­вых кислот содержат полярную группу атомов - карбоксил

И практически неполярный углеводородный радикал . Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличени­ем числа атомов в углеводородном радикале рас­творимость карбоновых кислот снижается.

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их - слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами с образованием сложных эфиров - реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода - ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами) - в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства карбоновый кислот - конспект

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота HCOOH - жидкость с резким запахом и темпе­ратурой кипения 100,8 °C, хорошо растворима в воде.

Муравьиная кислота ядови­та, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая мура­вьями, содержит эту кислоту.

Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленностях, медицине. Она ис­пользуется при крашении тканей и бумаги.

Уксусная (этановая) кислота CH 3 COOH - бес­цветная жидкость с характерным резким запа­хом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5 % -й раствор) и уксусной эссенции (70-80 %-й раствор) и широ­ко используются в пищевой промышленности. Ук­сусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокра­сочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают ве­щества, используемые для борьбы с сорняками, - гербициды. Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она продукт окис­ления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших пре­дельных одноосновных кислот являются пальми­тиновая C 15 H 31 COOH и стеариновая C 17 H 35 COOH кислоты . В отличие от низших кислот эти веще­ства твердые, плохо растворимы в воде.

Однако их соли - стеараты и пальмитаты - хо­рошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота C 17 H 33 COOH, или CH 3 - (CH 2) 7 - CH = CH -(CH 2) 7 COOH. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота HOOC-COOH, соли которой встре­чаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяет­ся в воде. Она применяется при полировке ме­таллов, в деревообрабатывающей и кожевенной промышленностях.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Содержание статьи

АЛЬДЕГИДЫ И КЕТОНЫ – органические соединения, содержащие фрагмент >C=O (углерод, связанный двойной связью с кислородом, его называют карбонильным). У альдегидов карбонильный углерод соединен с атомом Н и органической группой R (общая формула RHC=O), а в кетонах – с двумя органическими группами (общая формула R 2 С=О).

Номенклатура альдегидов и кетонов. Группу –(Н)С=О называют альдегидной, для связывания с органическими группами у нее есть всего одна свободная валентность, это позволяет ей находится только на конце углеводородной цепи (но не в середине). При составлении названия альдегида указывается название соответствующего углеводорода, к которому добавляется суффикс «аль», например, метаналь Н 2 С=О, этаналь Н 3 СС(Н)=О, пропаналь Н 3 ССН 2 С(Н)=О. В более сложных случаях углеродную цепь группы R нумеруют, начиная с карбонильного углерода, затем с помощью числовых индексов указывают положение функциональных групп и различных заместителей.

Рис. 1. НОМЕНКЛАТУРА АЛЬДЕГИДОВ . Замещающие и функциональные группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Для некоторых альдегидов часто используют тривиальные (упрощенные) названия, сложившиеся исторически, например, формальдегид Н 2 С=О, ацетальдегид Н 3 СС(Н)=О, кротоновый альдегид СН 3 СН=CHC(H)=O.

В отличие от альдегидной, кетонная группа >C=O может находиться также в середине углеводородной цепи, поэтому в простых случаях указывают названия органических групп (упоминая их в порядке увеличения) и добавляют слово «кетон»: диметилкетон CH 3 –CO–CH 3 , метилэтилкетон CH 3 CH 2 –CO–CH 3 . В более сложных случаях положение кетонной группы в углеводородной цепи указывают цифровым индексом, добавляя суффикс «он ». Нумерацию углеводородной цепи начинают с того конца, который находится ближе к кетонной группе (рис. 2).

Рис. 2. НОМЕНКЛАТУРА КЕТОНОВ . Замещающие и функциональные группы и соответствующие им цифровые индексы выделены различными цветами.

Для простейшего кетона CH 3 –CO–CH 3 принято тривиальное название – ацетон.

Химические свойства альдегидов и кетонов

определяются особенностями карбонильной группы >C=O, обладающей полярностью – электронная плотность между атомами С и О распределена неравномерно, сдвинута к более электроотрицательному атому О. В результате карбонильная группа приобретает повышенную реакционную способность, что проявляется в разнообразных реакциях присоединения по двойной связи. Во всех случаях кетоны менее реакционноспособны, чем альдегиды, в частности, из-за пространственных затруднений, создаваемых двумя органическими группами R, наиболее легко участвует в реакциях формальдегид Н 2 С=О.

1. Присоединение по двойной связи С=О.

При взаимодействии со спиртами альдегиды образуют полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR. Полуацетали могут далее реагировать с еще одной молекулой спирта, образуя полные ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR) 2 . Реакцию катализируют кислоты и основания (рис. 3А). В случае кетонов присоединение спиртов к двойной связи в С=О затруднено.

Сходным образом альдегиды и кетоны реагируют с синильной кислотой HCN, образуя гидроксинитрилы – соединения, содержащие у одного атома углерода ОН- и CN-группу: >C(OH)Cє N (рис. 3Б). Реакция примечательна тем, что позволяет увеличивать углеродную цепь (возникает новая связь С-С).

Точно так же (раскрывая двойную связь С=О) аммиак и амины реагируют с альдегидами и кетонами, продукты присоединения неустойчивы и конденсируются с выделением воды и образованием двойной связи C=N. В случае аммиака получаются имины (рис. 3В), а из аминов образуются так называемые основания Шиффа – соединения, содержащие фрагмент >C=NR (рис. 3Г). Продукт взаимодействия формальдегида с аммиаком несколько иной – это результат циклизации трех промежуточных молекул, в результате получается каркасное соединение гексаметилентетрамин, используемое в медицине как препарат уротропин (рис. 3Д).

2. Реакции конденсации. Для альдегидов и кетонов возможна конденсация, проходящая между двумя молекулами одного и того же соединения. При такой конденсации альдегидов двойная связь одной из молекул раскрывается, образуется соединение, содержащее одновременно альдегидную и ОН-группу, называемое альдолем (альдегидоспирт). Протекающую конденсацию называют, соответственно, альдольной, эту реакцию катализируют основания (рис. 4А). Полученный альдоль может далее конденсироваться с образованием двойной связи С=С и выделением конденсационной воды. В итоге получается ненасыщенный альдегид (рис. 4А, кротоновой альдегид). Такую конденсацию называют кротоновой по названию первого соединения в ряду ненасыщенных альдегидов. Кетоны также способны участвовать в альдольной конденсации (рис. 4Б), а вторая стадия – кротоновая конденсация, для них затруднена. В альдольной конденсации могут совместно участвовать молекулы различных альдегидов, а также одновременно альдегид и кетон, во всех случаях происходит удлинение углеродной цепи. Получившийся на последней стадии (рис. 4А) кротоновый альдегид, обладая всеми свойствами альдегидов, может далее участвовать в альдольной и кротоновой конденсации при взаимодействии с очередной порцией ацетальдегида, из которого он и был получен (рис. 4В). Таким способом можно удлинять углеводородную цепь, получая соединения, в которых чередуются простые и двойные связи: –СН=СН–СН=СН–.

Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома О (в виде воды), а метиленовая группа СН 2 или замещенная метиленовая группа (СНR либо СR 2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол (рис. 5.).

Рис. 5. КОНДЕНСАЦИЯ ФЕНОЛА С ФОРМАЛЬДЕГИДОМ

3. Полимеризация карбонильных соединений протекает с раскрытием двойной связи С=О и свойственна, в основном, альдегидам. При упаривании в вакууме водных растворов формальдегида образуется смесь циклических соединений (в основном, триоксиметилен) и линейных продуктов с незначительной длиной цепи n = 8–12 (параформ). Полимеризацией циклического продукта получают полиформальдегид (рис. 6) – полимер с высокой прочностью и хорошими электроизоляционными свойствами, используемый как конструкционный материал в машино- и приборостроении.

Рис. 6. ПРОДУКТЫ ПОЛИМЕРИЗАЦИИ ФОРМАЛЬДЕГИДА

4. Восстановление и окисление. Альдегиды и кетоны представляют собой как бы промежуточные соединения между спиртами и карбоновыми кислотами : восстановление приводит к спиртам, а окисление –- к карбоновым кислотам. При действии Н 2 (в присутствии катализатора Pt или Ni) либо других восстанавливающих реагентов, например, LiAlH 4 , альдегиды восстанавливаются, образуя первичные спирты, а кетоны – вторичные спирты (рис. 7, схемы А и Б).

Окисление альдегидов до карбоновых кислот проходит достаточно легко в присутствии О 2 или при действии слабых окислителей, таких как аммиачный раствор гидроксида серебра (рис. 7В). Эта эффектная реакция сопровождается образованием серебряного зеркала на внутренней поверхности реакционного прибора (чаще, обычной пробирки), ее используют для качественного обнаружения альдегидной группы. В отличие от альдегидов, кетоны более устойчивы к окислению, при их нагревании в присутствии сильных окислителей, например, КМnО 4 , образуются смеси карбоновых кислот, имеющих укороченную (в сравнении с исходным кетоном) углеводородную цепь.

Рис. 7. ВОССТАНОВЛЕНИЕ И ОКИСЛЕНИЕ АЛЬДЕГИДОВ И КЕТОНОВ

Дополнительным подтверждением того, что альдегиды занимают промежуточное положение между спиртами и кислотами, служит реакция, в результате которой из двух молекул альдегида получаются спирт и карбоновая кислота (рис. 8А), т.е. одна молекула альдегида окисляется, а другая восстанавливается. В некоторых случаях два полученных соединения – спирт и карбоновая кислота – далее реагируют между собой, образуя сложный эфир (рис.8Б).

Рис. 8. ПРОТЕКАЮЩЕЕ ОДНОВРЕМЕННО ОКИСЛЕНИЕ И ВОССТАНОВЛЕНИЕ АЛЬДЕГИДОВ

Получение альдегидов и кетонов.

Наиболее универсальный способ – окисление спиртов, при этом из первичных спиртов образуются альдегиды, а из вторичных – кетоны (рис. 9А и Б). Это реакции, обратные реакциям на рис. 7А и Б. Реакция поворачивает «вспять», если изменен действующий реагент (окислитель вместо восстановителя) и катализатор, при окислении спиртов эффективен медный катализатор.

В промышленности ацетальдегид получают окислением этилена (рис. 9В), на промежуточной стадии образуется спирт, у которого ОН-группа «примыкает» к двойной связи (виниловый спирт), такие спирты неустойчивы и сразу изомеризуются в карбонильные соединения. Другой способ – каталитическая гидратация ацетилена (рис. 9Г), промежуточное соединение – виниловый спирт. Если вместо ацетилена взять метилацетилен, то получится ацетон (рис. 9Д). Промышленный способ получения ацетона – окислением кумола. Ароматические кетоны, например, ацетофенон, получают каталитическим присоединением ацетильной группы к ароматическому ядру (рис. 9Е).

Применение альдегидов и кетонов.

Формальдегид Н 2 С=О (его водный раствор называют формалином) используют как дубитель кожи и консервант биологических препаратов.

Ацетон (СН 3) 2 С=О – широко применяемый экстрагент и растворитель лаков и эмалей.

Ароматический кетон бензофенон (С 6 Н 5) 2 С=О с запахом герани, используется в парфюмерных композициях и для ароматизации мыла.

Некоторые из альдегидов были сначала найдены в составе эфирных масел растений, а позже искусственно синтезированы.

Алифатический альдегид СН 3 (СН 2) 7 С(Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин (рис. 10) содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия (рис. 10).

Рис. 10. ВАНИЛИН

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С 6 Н 5) 2 С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетоновучаствовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Михаил Левицкий