Audi-a3club - Автомобильный портал

Какие колебания тела являются гармоническими. Кинематика гармонического колебательного движения

Движения, обладающие той или иной степенью повторяемости, называются колебаниями.

Если значения физических величин, изменяющихся в процессе движения, повторяются через равные промежутки времени, то такое движение называется периодическим. В зависимости от физической природы колебательного процесса различают механические и электромагнитные колебания. По способу возбуждения колебания делят на: свободные (собственные), происходящие в представленной самой себе системе около положения равновесия после какого-либо первоначального воздействия; вынужденные – происходящие при периодическом внешнем воздействии.

Условия возникновения свободных колебаний: а) при выведении тела из положения равновесия в системе должна возникнуть сила, стремящаяся вернуть его в положение равновесия; б) силы трения в системе должны быть достаточно малы.

Амплитуда А – модуль максимального отклонения колеблющейся точки от положения равновесия.

Колебания точки, происходящие с постоянной амплитудой, называютнезатухающими, а колебания с постепенно уменьшающейся амплитудой затухающими.

Время, в течение которого совершается полное колебание, называютпериодом (Т).

Частотой периодических колебаний называют число полных колебаний, совершаемых за единицу времени:

Единица частоты колебаний - герц (Гц). Герц – это частота колебаний, период которых равен 1 с: 1 Гц = 1 с –1 .

Циклической иликруговой частотой периодических колебаний называется число полных колебаний, совершаемых за время 2p с: . =рад/с.

Гармонические – это такие колебания, которые описываются периодическим законом:

или (1)

где – периодически изменяющаяся величина (смещение, скорость, сила и т.д.), А – амплитуда.

Система, закон движения которой имеет вид (1), называется гармоническим осциллятором . Аргумент синуса или косинуса называется фазой колебаний. Фаза колебания определяет смещение в момент времени t. Начальная фаза определяет смещение тела в момент начала отсчета времени.

Рассмотрим смещение x колеблющегося тела относительно положения равновесия. Уравнение гармонического колебания:

Первая производная от по времени дает выражение для скорости движения тела: ; (2)

Скорость достигает своего максимального значения в момент времени, когда =1: . Смещение же точки в этот момент рано нулю =0 (рис. 17.1, б ).

Ускорение изменяется со временем также по гармоническому закону:

где – максимальное значение ускорения. Знак минус означает, что ускорение направлено в сторону, противоположную смещению, т.е. ускорение и смещение изменяются в противофазе (рис. 17.1 в ). Видно, что скорость достигает максимального значения, когда колеблющаяся точка проходит положение равновесия. В этот момент смещение и ускорение равны нулю.

ГАРМОНИЧЕСКОЕ КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ

§1 Кинематика гармонического колебания

Процессы, повторяющиеся во времени называются колебаниями.

В зависимости от природы колебательного процесса и механизма возбуждения бывают: механические колебания (колебания маятников, струн, зданий, земной поверхности и т.д.); электромагнитные колебания (колебания переменного тока, колебания векторов и в электромагнитной волне и т.д.); электромеханические колебания (колебания мембраны телефона, диффузора громкоговорителя и др.); колебания ядер и молекул в результате теплового движения в атомах.

Рассмотрим отрезок [ОД] (радиус-вектор), совершающий вращательное движение вокруг точки 0. Длина |ОД| = A . Вращение происходит с постоянной угловой скоростью ω 0 . Тогда угол φ между радиус-вектором и осью x меняется со временем по закону

где φ 0 - угол между [ОД] и осью х в момент времени t = 0. Проекция отрезка [ОД] на ось х в момент времени t = 0

а в произвольный момент времени

(1)

Таким образом, проекция отрезка [ОД] на ось х совершает колебания, происходящие вдоль оси х , и эти колебания описываются законом косинуса (формула (1)).

Колебания, которые описываются законом косинуса

или синуса

называется гармоническими .

Гармонические колебания являются периодическими , т.к. значение величины х (и у) повторяется через равные промежутки времени.

Если отрезок [ОД] находится з низшем положении по рисунку, т.е. точка Д совпадает с точкой Р , то его проекция на ось х равна нулю. Назовем такое положение отрезка [ОД] положением равновесия. Тогда можно сказать, что величина х описывает смещение колеблющейся точки из положения равновесия. Максимальное смещение от положения равновесия называется амплитудой колебания

Величина

которая стоит под знаком косинуса называется фазой. Фаза определяет смещение от положения равновесия в произвольный момент времени t . Фаза в начальный момент времени t = 0 , равная φ 0 называется начальной фазой.

Т

Промежуток времени, за который совершается одно полное колебание, называется периодом колебаний Т . Число колебаний в единицу времени называется частотой колебаний ν.

Через промежуток времени, равный периоду Т , т.е. при увеличении аргумента косинуса на ω 0 Т , движение повторяется, и косинус принимает прежнее значение

т.к. период косинуса равен 2π , то, следовательно, ω 0 Т = 2π

таким образом, ω 0 - это число колебаний тела за 2π секунд. ω 0 - циклическая или круговая частота .

рисунок гармонического колебания

А - амплитуда, Т - период, х - смещение, t - время.

Скорость колеблющейся точки найдем, продифференцировав уравне-ние смещения х (t ) по времени

т.е. скорость v отличается по фазе от смещения х на π /2.

Ускорение - первая производная от скорости (вторая производная от смещения) по времени

т.е. ускорение а отличается от смещения по фазе на π.


Построим график х( t ) , у( t ) и а( t ) в одной смете координат (для простоты примем φ 0 = 0 и ω 0 = 1)

Свободными или собственными называются колебания, которые происходят в системе предоставленной самой себе после того, как она была выведена из положения равновесия.

1.18. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ИХ ХАРАКТЕРИСТИКИ

Определение гармонических колебаний. Характеристики гармонических колебаний: смещение от положения равновесия, амплитуда колебаний, фаза колебания, частота и период колебаний. Скорость и ускорение колеблющейся точки. Энергия гармонического осциллятора. Примеры гармонических осцилляторов: математический, пружинный, крутильный и физиче ский маятники.

Акустика, радиотехника, оптика и другие разделы науки и техники базируются на учении о колебаниях и волнах. Большую роль играет теория колебаний в механике, в особенности в расчетах на прочность летательных аппаратов, мостов, отдельных видов машин и узлов.

Колебания являются процессами, повторяющимися через одинаковые промежутки времени (при этом далеко не все повторяющиеся процессы являются колебаниями!). В зависимости от физической природы повторяющегося процесса различают колебания механические, электромагнитные, электромеханические и т.п. При механических колебаниях периодически изменяются положения и координаты тел.

Возвращающая сила - сила, под действием которой происходит колебательный процесс. Эта сила стремится тело или материальную точку, отклоненную от положения покоя, вернуть в исходное положение.

В зависимости от характера воздействия на колеблющееся тело различают свободные (или собственные) колебания и вынужденные колебания.

В зависимости от характера воздействия на колеблющуюся систему различают свободные колебания, вынужденные, автоколебания и параметрические колебания.

    Свободными (собственными) колебаниями называются такие колебания, которые происходят в системе, предоставленной самой себе после того, как ей был сообщен толчок, либо она была выведена из положения равновесия, т.е. когда на колеблющееся тело действует только возвращающая сила.. Примером могут служить колебания шарика, подвешенного на нити. Для того, чтобы вызвать колебания, надо либо толкнуть шарик, либо, отведя в сторону, отпустить его. В том случае, если не происходит рассеивания энергии, свободные колебания являются незатухающими. Однако, реальные колебательные процессы являются затухающими, т.к. на колеблющееся тело действуют силы сопротивления движению (в основном силы трения).

    · Вынужденными называются такие колебания, в процессе которых колеблющаяся система подвергается воздействию внешней периодически изменяющейся силы (например, колебания моста, возникающие при прохождении по нему людей, шагающих в ногу). Во многих случаях системы совершают колебания, которые можно считать гармоническими.

    · Автоколебания , как и вынужденные колебания, сопровождаются воздействием на колеблющуюся систему внешних сил, однако, моменты времени, когда осуществляются эти воздействия, задаются самой колеблющейся системой. То есть система сама управляет внешним воздействием. Примером автоколебательной системы являются часы, в которых маятник получает толчки за счет энергии поднятой гири или закрученной пружины, причем эти толчки происходят в моменты прохождения маятника через среднее положение.

    · Параметрические колебания осуществляются при периодическом изменении параметров колеблющейся системы (качающийся на качелях человек периодически поднимает и опускает свой центр тяжести, тем самым меняя параметры системы). При определенных условиях система становится неустойчивой - случайно возникшее отклонение из положения равновесия приводит к возникновению и нарастанию колебаний. Это явление называется параметрическим возбуждением колебаний (т.е. колебания возбуждаются за счет изменения параметров системы), а сами колебания – параметрическими.

Несмотря на разную физическую природу, для колебаний характерны одни и те же закономерности, которые исследуются общими методами. Важной кинематической характеристикой является форма колебаний. Она определяется видом той функции времени, которая описывает изменение той или иной физической величины при колебаниях. Наиболее важными являются такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса . Они называются гармоническими .

Гармоническими колебаниями называются колебания, при которых колеблющаяся физическая величина изменяется по закону синуса (или косинуса).

Этот вид колебаний особенно важен по следующим причинам. Во-первых, колебания в природе и в технике часто имеют характер очень близких к гармоническим. Во-вторых, периодические процессы иной формы (с другой зависимостью от времени) могут быть представлены как наложение, или суперпозиция,гармонических колебаний.

Уравнение гармонического осциллятора

Гармоническое колебание описывается периодическим законом:

Рис. 18.1. Гармоническое колебание

З

десь
- характеризует изменение какой-либо физической величины при колебаниях (смещение положения маятника из положения равновесия; напряжение на конденсаторе в колебательном контуре и т.д.), A - амплитуда колебаний ,
- фаза колебаний , - начальная фаза ,
- циклическая частота ; величину
называют также собственной частотой колебаний. Такое название подчеркивает, что эта частота определяется параметрами колебательной системы. Система, закон движения которой имеет вид (18.1), называется одномерным гармоническим осциллятором . Помимо перечисленных величин для характеристики колебаний вводят понятия периода , т.е. времени одного колебания.

(Периодом колебаний T называется наименьший промежуток времени, по истечении которого повторяются состояния колеблющейся системы (совершается одно полное колебание) и фаза колебания получает приращение 2p).

и частоты
, определяющей число колебаний в единицу времени. За единицу частоты принимается частота такого колебания, период которого равен 1 с. Эту единицу называют герцем (Гц ).

Частотой колебаний n называется величина обратная периоду колебаний - число полных колебаний, совершаемых в единицу времени.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении.

Фаза колебаний - аргумент периодической функции или описывающей гармонический колебательный процесс (ω- угловая частота, t - время, - начальная фаза колебаний, то есть фаза колебаний в начальный момент времени t = 0).

Первая и вторая производные по времени от гармонически колеблющейся величины также совершают гармонические колебания той же частоты:

В данном случае за основу взято уравнение гармонических колебаний, записанное по закону косинуса. При этом первое из уравнений (18.2) описывает закон, по которому изменяется скорость колеблющейся материальной точки (тела), второе уравнение описывает закон, по которому изменяется ускорение колеблющейся точки (тела).

Амплитуды
и
равны соответственно
и
. Колебание
опережает
по фазе на ; а колебание
опережает
на . Значения A и могут быть определены из заданных начальных условий
и
:

,
. (18.3)

Энергия колебаний осциллятора

П

Рис. 18.2. Пружинный маятник

осмотрим теперь, что будет происходить сэнергией колебаний . В качестве примера гармонических колебаний рассмотрим одномерные колебания, совершаемые телом массы m под действием упругой силы
(к примеру, пружинный маятник, см. рис. 18.2). Силы иной природы, чем упругие, но в которых выполняется условие F = -kx, называются квазиупругими. Под действием этих сил тела тоже совершают гармонические колебания. Пусть:

смещение:

скорость:

ускорение:

Т.е. уравнение таких колебаний имеет вид (18.1) с собственной частотой
. Квазиупругая сила является консервативной . Поэтому полная энергия таких гармонических колебаний должна оставаться постоянной. В процессе колебаний происходит превращение кинетической энергии E к в потенциальную E п и обратно, причем в моменты наибольшего отклонения от положения равновесия полная энергия равна максимальному значению потенциальной энергии, а при прохождении системы через положение равновесия полная энергия равна максимальному значению кинетической энергии. Выясним, как изменяется со временем кинетическая и потенциальная энергия:

Кинетическая энергия:

Потенциальная энергия:

(18.5)

Учитывая то, что т.е. , последнее выражение можно записать в виде:

Таким образом, полная энергия гармонического колебания оказывается постоянной. Из соотношений (18.4) и (18.5) также следует, что средние значения кинетической и потенциальной энергии равны друг другу и половине полной энергии, поскольку средние значения
и
за период равны 0,5. Используя тригонометрические формулы, можно получить, что кинетическая и потенциальная энергия изменяются с частотой
, т.е. с частотой в два раза превышающей частоту гармонического колебания.

В качестве примеров гармонического осциллятора могут быть пружинный, физический, математический маятники и крутильный маятники.

1. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид или (18.8) Из формулы (18.8) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

(18.9) и периодом

(18.10) Формула (18.10) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (18.9) и формулу потенциальной энергии предыдущего раздела, равна (см.18.5)

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.18.3 Физический маятник

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы (18.11) где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (18.11) запишем как

Или Принимая (18.12) получим уравнение

Идентичное с (18.8), решение которого найдем и запишем как:

(18.13) Из формулы (18.13) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

(18.14) где введена величина L=J/(ml ) - . Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 18.3). Применяя теорему Штейнера для момента инерции оси, найдем

Т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

(8) где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника (18.15) Сопоставляя формулы (18.13) и (18.15), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника. Для математического маятника (материальной точки массой m , подвешенной на невесомой нерастяжимой нити длиной l в поле силы тяжести с ускорением свободного падения равным g ) при малых углах отклонения (не превышающих 5-10 угловых градусов) от положения равновесия собственная частота колебаний:
.

4. Тело, подвешенное на упругой нити или другом упругом элементе, совершающее колебания в горизонтальной плоскости, представляет собой крутильный маятник.

Эта механическая колебательная система, которая использует силы упругих деформаций. На рис. 18.4 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C – момент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.

По аналогии с грузом на пружине можно получить.

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания широко распространены в окружающем мире и могут иметь самую различную природу. Это могут быть механические (маятник), электромагнитные (колебательный контур) и другие виды колебаний.
Свободными , или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити.

Особую роль в колебательных процессах имеет простейший вид колебаний - гармонические колебания. Гармонические колебания лежат в основе единого подхода при изучении колебаний различной природы, так как колебания, встречающиеся в природе и технике, часто близки к гармоническим, а периодические процессы иной формы можно представить как наложение гармонических колебаний.

Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .

Уравнение гармонических колебаний имеет вид:

где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постоянная φ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.

Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.

Период гармонических колебаний равен : T = 2π/ .

Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.

Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.


Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.